Abstract

Abstract This paper proposes a method that discovers various sequential patterns from sequential data. The sequential data is a set of sequences. Each sequence is a row of item sets. Many previous methods discover frequent sequential patterns from the data. However, the patterns tend to be similar to each other because they are composed of limited items. The patterns do not always correspond to the interests of analysts. Therefore, this paper tackles on the issue discovering various sequential patterns. The proposed method decides redundant sequential patterns by evaluating the variety of items and deletes them based on three kinds of delete processes. It can discover various sequential patterns within the upper bound for the number of sequential patterns given by the analysts. This paper applies the method to the synthetic sequential data which is characterized by number of items, their kind, and length of sequence. The effect of the method is verified through numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.