Abstract
This article describes a new algorithm for the computation of consistent initial values for differential-algebraic equations (DAEs). The main idea is to formulate the task as a constrained optimization problem in which, for the differentiated components, the computed consistent values are as close as possible to user-given guesses. The generalization to compute Taylor coefficients results immediately, whereas the amount of consistent coefficients will depend on the size of the derivative array and the index of the DAE. The algorithm can be realized using automatic differentiation (AD) and sequential quadratic programming (SQP). The implementation in Python using AlgoPy and SLSQP has been tested successfully for several higher index problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.