Abstract
In this paper, a new procedure is developed for the solution of a general two-dimensional uncoupled symmetric double contact problem with smooth contact zones in which the indenter geometry is described by a piecewise biquadratic function. This procedure gives an approximate closed-form solution for any smooth indenter profile. In order to evaluate the accuracy of this approach, it is applied to the symmetric indentation of a flat surface by two rigidly interconnected parabolic indenters and results are compared with the exact unclosed-form solution. Moreover, this procedure is applied to the symmetric indentation of a flat surface by two rigidly interconnected cylinders to compare the results with the finite element solution obtained by the finite element method software, ABAQUS. The results showed that in comparison with the finite element method, this procedure is a fast and highly accurate method with low complexity that makes feasible the possibility of determining approximate closed-form solution for a wide range of indenter geometries with a concavity between two symmetric contact zones; hence it can be useful in practical issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.