Abstract

<abstract> In this paper, a new total generalized variational (TGV) model for restoring images with Cauchy noise is proposed, which contains a non-convex fidelity term and a TGV regularization term. In order to obtain a strictly convex model, we add an appropriate proximal term to the non-convex fidelity term. We prove that the solution of the proposed model exists and is unique. Due to the convexity of the proposed model and in order to get a convergent algorithm, we employ an alternating minimization algorithm to solve the proposed model. Finally, we demonstrate the performance of our scheme by numerical examples. Numerical results demonstrate that the proposed algorithm significantly outperforms some previous methods for Cauchy noise removal. </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.