Abstract

We present a new fast algorithm to compute the real stability radius with respect to the open left half plane which is an important problem in many engineering applications. The method is based on a well-known formula for the real stability radius and the correspondence of singular values of a transfer function to pure imaginary eigenvalues of a three-parameter Hamiltonian matrix eigenvalue problem. We then apply the implicit determinant method, used previously by the authors to compute the complex stability radius, to find the critical point corresponding to the desired singular value. This corresponds to a two-dimensional Jordan block for a pure imaginary eigenvalue in the parameter dependent Hamiltonian matrix. Numerical results showing quadratic convergence of the algorithm are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.