Abstract

The polyprenols are involved in some essential biosynthetic pathways and serve as ubiquitous components of cellular membranes, so their fingerprinting in natural samples is of great interest. Previous studies indicate that due to the high hydrophobicity of polyprenols their direct analysis by mass spectrometry with soft ionization techniques may be difficult and require preliminary off-line derivatization. Hence, a method for rapid and sensitive screening of polyprenols is required. A combination of thin-film chemical deposition and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for analysis of the polyprenol profile of Abies sibirica L. extract. Polyprenol-based monolayers were formed at the interphase of aqueous barium acetate solution, supplemented with 2,5-dihydroxybenzoic acid, and an n-hexane solution of polyprenols directly on a MALDI target plate. Peaks corresponding to [M- H + Ba]+ ions were observed in the MALDI-TOF mass spectra of polyprenols. A total of nine polyprenol homologues were identified with a polyprenol of 16 isoprene units dominating. The limit of detection was established at the level of 6pg. Possible mechanisms of formation of [M - H + Ba]+ ions of polyprenols were discussed. The proposed approach can be suitable for high-throughput screening of polyprenols in biological samples of different origin due to easy sample preparation and high sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.