Abstract

AbstractIn this paper, a new computational scheme based on operational matrices (OMs) of two‐dimensional wavelets is proposed for the solution of variable‐order (VO) fractional partial integro‐differential equations (PIDEs). To accomplish this method, first OMs of integration and VO fractional derivative (FD) have been derived using two‐dimensional Legendre wavelets. By implementing two‐dimensional wavelets approximations and the OMs of integration and variable‐order fractional derivative (VO‐FD) along with collocation points, the VO fractional partial PIDEs are reduced into the system of algebraic equations. In addition to this, some useful theorems are discussed to establish the convergence analysis and error estimate of the proposed numerical technique. Furthermore, computational efficiency and applicability are examined through some illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.