Abstract
Machine learning and deep learning have become the most useful and powerful tools in the last years to mine information from large datasets. Despite the successful application to many research fields, it is widely known that some of these solutions based on artificial intelligence are considered black-box models, meaning that most experts find difficult to explain and interpret the models and why they generate such outputs. In this context, explainable artificial intelligence is emerging with the aim of providing black-box models with sufficient interpretability. Thus, models could be easily understood and further applied. This work proposes a novel method to explain black-box models, by using numeric association rules to explain and interpret multi-step time series forecasting models. Thus, a multi-objective algorithm is used to discover quantitative association rules from the target model. Then, visual explanation techniques are applied to make the rules more interpretable. Data from Spanish electricity energy consumption has been used to assess the suitability of the proposal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.