Abstract
Aptamers are nucleic acid-based high affinity ligands that are able to capture their corresponding target through molecular recognition. In this study, several DNA aptamers with high affinity and specificity for β-glucuronidases (PGUS-E) were obtained by our modified SELEX method. Among them, Apt5 and Apt9 were selected as representatives and covalently linked to magnetic beads, respectively. The aptamer-modified magnetic beads were characterized and successfully applied to one-step purification and immobilization of PGUS-E from the complex cell lysates. By conveniently adjusting the pH and ion strength, the PGUS-E purities reached 84% for Apt5-modified beads and 88% for Apt9-modified beads. Moreover, the maximum PGUS-E capturing capacity of the Apt5 and Apt9 modified magnetic beads were found to be 31.75μg/mg and 32.95μg/mg, respectively. The immobilized PGUS-E on aptamer-based magnetic beads showed good reusability, and the conversion of glycyrrhizin still remained more than 70% after 7 cycles. In addition, the aptamer-modified beads support can be easily regenerated, and the conversion rate of glycyrrhizin (GL) was still 62% after the 7th cycle of regeneration. This investigation can be easily extended to other enzyme systems and may help open a generic route to develop a novel enzyme immobilization technology for biocatalysis based on aptamer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.