Abstract

Although more-recently developed antivirals target different molecules in the HIV-1 replication cycle, nucleoside reverse transcriptase inhibitors (NRTIs) remain central for HIV-1 therapy. Here, we test the anti-HIV activity of a phosphonate chimera of two well-known NRTIs, namely AZT and 3TC. We show that this newly synthesized compound suppressed HIV-1 infection in lymphoid tissue ex vivo more efficiently than did other phosphonates of NRTIs. Moreover, the new compound was not toxic for tissue cells, thus making the chimeric phosphonate strategy a valid approach for the development of anti HIV-1 compound heterodimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.