Abstract
Pharmacognosy Magazine ,2019,15,61,204-207.DOI:10.4103/pm.pm_476_18Published:March 2019Type:Original Article Authors:Sabrin R M. Ibrahim, Gamal A Mohamed, Maan T Khayat, Rwaida A Al Haidari, Amal A El-Kholy, and Mohamed F Zayed Author(s) affiliations:Sabrin R M. Ibrahim1, Gamal A Mohamed2, Maan T Khayat3, Rwaida A Al Haidari4, Amal A El-Kholy5, Mohamed F Zayed6 1Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt. 2Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt. 3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia. 4Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia. 5Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia; Department of Clinical Pharmacy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt. 6Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. Abstract:Background: Endophytic fungi attracted attention as a prolific source of bioactive natural products with a potent pharmaceutical activity and unique structure. Objective: The main goal of the study is to separate and identify the bioactive constituents from the endophytic fungus Fusarium sp. as well as to evaluate the antimicrobial of the new metabolites. Materials and Methods: The fungus was cultured on a rice medium, and then, the cultures were extracted with ethyl acetate (EtOAc). The EtOAc extract was chromatographed utilizing different chromatographic methods to give five metabolites. The structural determination of these metabolites was carried out by the analyses of various spectroscopic data, in addition to comparison with the formerly reported data. The antifungal and antibacterial potentials were evaluated toward various microbial strains using disc diffusion assay. Results: A new aminobenzamide derivative, namely fusaribenzamide A (2), and four known metabolites: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (1), adenosine (3), p-hydroxyacetophenone (4), and tyrosol (5) were isolated. Fusaribenzamide A (2) possessed significant antifungal activity toward Candida albicans with minimum inhibitory concentration (MIC) value 11.9 μg/disc compared to nystatin (MIC 4.9 μg/disc). Conclusion: The endophytic fungus Fusarium sp. could be considered as a wealthy pool for the isolation of aminobenzamide derivatives. Fusaribenzamide A may be a candidate for the discovery of a promising antifungal agent. Keywords:Aminobenzamide derivative, Antimicrobial, endophytes, fusaribenzamide A, Fusarium sp., Mentha longifoliaView:PDF (796.55 KB)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.