Abstract
Nonmixed planar heterojunction (PHJ) small-molecule organic photovoltaics (OPVs) with 96% internal quantum efficiency (at 595nm) and 4.77% power conversion efficiency (PCE) have been demonstrated. In addition to boron subphthalocyanine chloride (SubPc) and C60 as electron donor and acceptor materials, respectively, PHJ OPVs contain an ultrathin (2nm) buffer layer of bis-(naphthylphenylaminophenyl)fumaronitrile (NPAFN) between the indium tin oxide (ITO) anode and the donor layer (SubPc). Compared with copper phthalocyanine (CuPc) or α-naphthylphenylbiphenyl diamine (NPB) buffer layers, the NPAFN buffer layer blocks the exciton diffusion from the SubPc electron donor layer to the ITO anode more effectively and considerably improves the short circuit current (JSC) from 5.96 (without an NPAFN layer) to 7.70mA/cm2 (with a 4-mm-thick NPAFN layer ). In addition, experimental results indicated that the NPAFN buffer layer reduces the crystallization, or stacking, of the SubPc electron donor, thereby limiting the reverse saturation current and elevating the open circuit voltage (VOC) from 1.01 (without an NPAFN layer) to 1.08V (with a-2-nm thick NPAFN layer). However, series resistance (RS) of the OPV monotonically increases with increasing NPAFN layer thickness. The performance of the OPV is optimized when the NPAFN buffer layer thickness is 2nm. Compared with a SubPc–C60 PHJ OPV without an NPAFN buffer layer, the PCE of a OPV with a buffer layer increases by 22% from 3.96% to 4.77%, with a concurrent increase in JSC (from 5.96 to 7.02mA/cm2) and VOC (from 1.01 to 1.08V). However, a decrease in RS (from 10.21 to 14.95Ωcm2) and in fill factor (from 65% to 63%) is also observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.