Abstract

Different from the isotropic Dirac cones existing in other two-dimensional (2D) materials, anisotropic Dirac cones have the merit of anisotropic carrier mobility for applications in direction-dependent quantum devices. Motivated by the recent experimental finding of an anisotropic Dirac cone in borophene, here we report a new 2D anisotropic Dirac cone material, B2S monolayer, identified by using a global structure search method and first-principles calculation combined with a tight-binding model. The B2S monolayer is found to be stable mechanically, thermally, and dynamically and exhibits an anisotropic Dirac cone exactly at the Fermi level, showing a Fermi velocity of 106 m/s in the same order of magnitude as that of graphene. Moreover, B2S monolayer is the first anisotropy Dirac cone material with a pristine honeycomb structure stabilized by S in free-standing conditions where each atom has four valence electrons on average being isoelectronic to C. This study would expand the Dirac cone material family with new features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call