Abstract
In this work, we have used a novel adaptive neuro-fuzzy inference system (ANFIS) method to design and fabricate a high-performance microstrip diplexer. For developing the proposed ANFIS model, the hybrid learning method consisting of least square estimation and back-propagation (BP) techniques is utilized. To achieve a compact diplexer, a designing process written in MATLAB 7.4 software is introduced based on the proposed ANFIS model. The basic microstrip resonator used in this study is mathematically analyzed. The designed microstrip diplexer operates at 2.2[Formula: see text]GHz and 5.1[Formula: see text]GHz for wideband wireless applications. Compared to the previous works, it has the minimum insertion losses and the smallest area of 0.007 [Formula: see text] (72.2[Formula: see text]mm2). It has flat channels with very low group delays (GDs) and wide fractional bandwidths (FBWs). The GDs at its lower and upper channels are only 0.48[Formula: see text]ns and 0.76[Formula: see text]ns, respectively. Another advantage of this work is its suppressed harmonics up to 12.9[Formula: see text]GHz (5th harmonic). To design the proposed diplexer, an LC model of the presented resonator is introduced and analyzed. To verify the simulation results and the presented ANFIS method, we fabricated and measured the proposed diplexer. The results show that both simulations and measurements data are in good agreement, which give reliability to the proposed ANFIS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.