Abstract
In a previous paper, based on the black hole perturbation approach, we formulated a new analytical method for regularizing the self-force acting on a particle of small mass $\mu$ orbiting a Schwarzschild black hole of mass $M$, where $\mu\ll M$. In our method, we divide the self-force into the $\tilde S$-part and $\tilde R$-part. All the singular behaviors are contained in the $\tilde S$-part, and hence the $\tilde R$-part is guaranteed to be regular. In this paper, focusing on the case of a scalar-charged particle for simplicity, we investigate the precision of both the regularized $\tilde S$-part and the $\tilde R$-part required for the construction of sufficiently accurate waveforms for almost circular inspiral orbits. For the regularized $\tilde S$-part, we calculate it for circular orbits to 18 post-Newtonian (PN) order and investigate the convergence of the post-Newtonian expansion. We also study the convergence of the remaining $\tilde{R}$-part in the spherical harmonic expansion. We find that a sufficiently accurate Green function can be obtained by keeping the terms up to $\ell=13$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.