Abstract

In the calculation of thermodynamic properties and three-dimensional structures of macromolecules, such as proteins, it is important to have an efficient algorithm for computing the solvent-accessible surface area of macromolecules. Here, we propose a new analytical method for this purpose. In the proposed algorithm we consider the transformation that maps the spherical circles formed by intersection of the atomic surfaces in three-dimensional space onto the circles on a two-dimensional plane, and the problem of computing the solvent-accessible surface area is reduced to the problem of computing the corresponding curve integrals on the plane. This allows to consider only the integrals along the circular trajectories on the plane. The algorithm is suitable for parallelization. Testings on many proteins as well as the comparison to the other analogous algorithms have shown that our method is accurate and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.