Abstract

A new sorbent based on mixture of bismuth oxide-fullerene nanoparticles (Bi2O3-NF) was used for degradation/removal of toluene from workplace and artificial air by UV-photocatalytic oxidation method (UV-PCOM). By set up of pilot, standard gas of toluene was generated with difference concentrations, and then was passed through UV lamp-glass quartz cell accessory(UV-GQC) by SKC pump at optimized flow rate. Following the UV irradiation, the electrons and holes can undergo redox reactions with toluene on the Bi2O3 surface that lead to the formation of toluene intermediates and toluene. Toluene and intermediates was physically and radically absorbed on the 200 mg of NF at room temperature and then, desorbed from it at 185 OC before determined by GC/FID. In optimized conditions, the adsorption capacity and removal efficiency of NF were obtained 212 mg g-1 and more than 95%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call