Abstract

Two-grid methods with exact solution of the Galerkin coarse-grid system have been well studied by the multigrid community: an elegant identity has been established to characterize the convergence factor of exact two-grid methods. In practice, however, it is often too costly to solve the Galerkin coarse-grid system exactly, especially when its size is large. Instead, without essential loss of convergence speed, one may solve the coarse-grid system approximately. In this paper, we develop a new framework for analyzing the convergence of inexact two-grid methods: two-sided bounds for the energy norm of the error propagation matrix of inexact two-grid methods are presented. In the framework, a restricted smoother involved in the identity for exact two-grid convergence is used to measure how far the actual coarse-grid matrix deviates from the Galerkin one. As an application, we establish a unified convergence theory for multigrid methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.