Abstract

Most of the full field methods for residual stress investigation combine an optical interferometric technique (grating interferometry, speckle interferometry, holographic interferometry) with the standard hole drilling method. Nowadays many articles describing this kind of approach exist, but most of them focus on the experimental aspects while little attention is devoted to the optimal usage of the huge mass of data that the optical methods make available. This paper, without relying on a specific experimental technique, focuses on the development of a new analytical method that attempts to consistently use all the available data. After a detailed algorithm description, the proposed analysis procedure is tested against numerically generated residual stress fields simulating in-plane speckle interferometry. The results obtained show the reliability and robustness of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.