Abstract

A new ammine dual-cation borohydride, LiMg(BH(4))(3)(NH(3))(2), has been successfully synthesized simply by ball-milling of Mg(BH(4))(2) and LiBH(4)·NH(3). Structure analysis of the synthesized LiMg(BH(4))(3)(NH(3))(2) revealed that it crystallized in the space group P6(3) (no. 173) with lattice parameters of a=b=8.0002(1) Å, c=8.4276(1) Å, α=β=90°, and γ=120° at 50 °C. A three-dimensional architecture is built up through corner-connecting BH(4) units. Strong N-H···H-B dihydrogen bonds exist between the NH(3) and BH(4) units, enabling LiMg(BH(4))(3)(NH(3))(2) to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH(4))(3)(NH(3))(2)/LiBH(4) composite is able to release over 8 wt% hydrogen below 200 °C, which is comparable to that released by Mg(BH(4))(3)(NH(3))(2). More importantly, it was found that release of the byproduct NH(3) in this system can be completely suppressed by adjusting the ratio of Mg(BH(4))(2) and LiBH(4)·NH(3). This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.