Abstract

In the existence of multicollinearity problem in the logistic model, some important problems may occur in the analysis of the model, such as unstable maximum likelihood estimator with very high standard errors, false inferences. The Liu-type logistic estimator was proposed as two-parameter estimator to overcome multicollinearity problem in the logistic model. In the existing previous studies, the (k, d) pair in this shrinkage estimator is estimated by two-phase methods. However, since the different estimators can be utilized in the estimation of d, optimal choice of the (k, d) pair provided using the two-phase approaches is not guaranteed to overcome multicollinearity. In this article, a new alternative method based on particle swarm optimization is suggested to estimate (k, d) pair in Liu-type logistic estimator, simultaneously. For this purpose, an objective function that eliminates the multicollinearity problem, provides minimization of the bias of the model and improvement of the model’s predictive performance, is developed. Monte Carlo simulation study is conducted to show the performance of the proposed method by comparing it with existing methods. The performance of the proposed method is also demonstrated by the real dataset which is related to the collapse of commercial banks in Turkey during Asian financial crisis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.