Abstract

AbstractIn the (r | p)-centroid problem, two players, called leader and follower, open facilities to service clients. We assume that clients are identified with their location on the Euclidian plane, and facilities can be opened anywhere in the plane. The leader opens p facilities. Later on, the follower opens r facilities. Each client patronizes the closest facility. Our goal is to find p facilities for the leader to maximize his market share. For this Stackelberg game we develop a new alternating heuristic, based on the exact approach for the follower problem. At each iteration of the heuristic, we consider the solution of one player and calculate the best answer for the other player. At the final stage, the clients are clustered, and an exact polynomial-time algorithm for the (1 | 1)-centroid problem is applied. Computational experiments show that this heuristic dominates the previous alternating heuristic of Bhadury, Eiselt, and Jaramillo.KeywordsMarket ShareStackelberg GameExact ApproachCompetitive LocationClose FacilityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call