Abstract

BackgroundAcid soil is a serious limitation to crop production all over the world. Toxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield. Although a gene tolerant to acid soil has been identified, it has not been used in malting barley breeding, which is partly due to the acid soil tolerance gene being linked to unfavorable malting quality traits.ResultsA Brazilian malting barley variety Br2 was identified as tolerant to acid soil. A doubled haploid (DH) population was developed from a cross between Br2 and the Australian acid-sensitive cultivar Hamelin. The DH population was tested for acid soil tolerance in native acid soil and a hydroponic system with pH 4.2, pH 4.2 + Al or pH 6.5, and genotyped using SSR, DArT and gene-specific markers. A single QTL was detected for all parameters related to acid soil tolerance. The QTL was mapped to the known HvMATE location on chromosome 4H. Sequence alignment of the HvMATE gene identified 13 INDELs and 87 SNPs, where one SNP coded for a single amino acid difference between the two varieties. A gene-specific marker was developed to detect the single nucleotide polymorphism between Hamelin and Br2. This marker co-segregated with aluminium tolerance and accounted for 79 % of phenotypic variation for acid soil tolerance.ConclusionThe present study identified a novel source of acid soil/Al tolerance from a Brazilian malting barley cultivar Br2. This variety tolerated Al toxicity but was sensitive to low pH which is similar to most other Al-tolerant varieties. A gene-specific marker Cit7 was developed based on the HvMATE gene sequence. Cit7 will improve the efficiency of molecular-assisted selection of new barley varieties with tolerance to acid soil. Multiple alleles exist for the acid soil tolerance gene on chromosome 4H, so a malting barley variety that tolerates acid soil could be developed by selecting suitable tolerant alleles. Tolerance to low pH may play an important role for barley to adapt to acid soils.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0254-4) contains supplementary material, which is available to authorized users.

Highlights

  • IntroductionToxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield

  • Acid soil is a serious limitation to crop production all over the world

  • Root growth of the two parents was similar in the pH 6.5 treatment, with average root lengths of 88 and 92 mm for Hamelin and Br2, respectively

Read more

Summary

Introduction

Toxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield. Acid soil is a major limiting factor to plant production worldwide. It accounts for 30 % of the total land area and 50 % of the arable land [1] with loss of production equating to more than 600 million US dollars annually [2]. Aluminium (Al) toxicity limits growth and productivity of barley (Hordeum vulgare L.) on acid soils and restricts barley as a crop in many agricultural areas [2, 3]. The toxic aluminium (Al) cation in acid soil may restrict water uptake and nutrient absorption, which eventually reduces plant production. Root length is often selected as the phenotypic trait for aluminium toxicity tolerance [4, 5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.