Abstract

Coherent scatter echoes from meteors entering Earth’s atmosphere and those from the ionospheric E-region overlap: echoes of both types are seen at altitudes between 95 km -105 km. The physical origin of plasma irregularities produced by disintegrating meteors naturally differ from that of ionospheric turbulence, and there is a need to distinguish between the two types of echoes. We present a novel algorithm to automatically sort through arbitrarily large datasets of radar echoes with accurate location data, classifying each echo as either meteoric or ionospheric in origin. The algorithm establishes a definition of clustering, in both time and space. We use data from ICEBEAR 3D, an experimental coherent scatter radar in Saskatchewan, Canada. We discuss the two classes of scatter echoes, and present statistical results from 2020, 2021. In future experiments, our proposed algorithm can be applied to both coherent and incoherent radar scatter, provided they come with 3D location information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.