Abstract

In this paper, the hybrid differential evolution and symbiotic organism search (HDS), is the first-time developed for general solutions of a piezoelectric stack in ultrasonic transducers. The convergence and reliability of the new algorithm are verified through comparison with corresponding data from similar previous publications and differential evolution (DE) algorithm. This study also presents and discusses the calculation results using HDS for commercial piezoelectric stacks. The Matlab HDS programs for a segmented piezoelectric (PZT) model have advanced features including its applicability to any configurations, thickness and arbitrary layer numbers of PZT. Using the novel proposed technique, there is no requirement for initial data guess, no limitations for piezoelectric stacks and the convergence rate is much faster than DE. Therefore, the HDS is promising for direct evaluation of specific aging or degradation mechanisms of ultrasonic transducers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.