Abstract

We consider high-dimensional data which contains a linear low-dimensional non-Gaussian structure contaminated with Gaussian noise, and discuss a method to identify this non-Gaussian subspace. For this problem, we provided in our previous work a very general semi-parametric framework called non-Gaussian component analysis (NGCA). NGCA has a uniform probabilistic bound on the error of finding the non-Gaussian components and within this framework, we presented an efficient NGCA algorithm called Multi-index Projection Pursuit. The algorithm is justified as an extension of the ordinary projection pursuit (PP) methods and is shown to outperform PP particularly when the data has complicated non-Gaussian structure. However, it turns out that multi-index PP is not optimal in the context of NGCA. In this article, we therefore develop an alternative algorithm called iterative metric adaptation for radial kernel functions (IMAK), which is theoretically better justifiable within the NGCA framework. We demonstrate that the new algorithm tends to outperform existing methods through numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.