Abstract

We have developed an implicit, multi-group, time-dependent, spherical neutrino transport code based on the Feautrier variables, the tangent-ray method, and accelerated ${\bf \Lambda}$ iteration. The code achieves high angular resolution, is good to O($v/c$), is equivalent to a Boltzmann solver (without gravitational redshifts), and solves the transport equation at all optical depths with precision. In this paper, we present our formulation of the relevant numerics and microphysics and explore protoneutron star atmospheres for snapshot post-bounce models. Our major focus is on spectra, neutrino-matter heating rates, Eddington factors, angular distributions, and phase-space occupancies. In addition, we investigate the influence on neutrino spectra and heating of final-state electron blocking, stimulated absorption, velocity terms in the transport equation, neutrino-nucleon scattering asymmetry, and weak magnetism and recoil effects. Furthermore, we compare the emergent spectra and heating rates obtained using full transport with those obtained using representative flux-limited transport formulations to gauge their accuracy and viability. Finally, we derive useful formulae for the neutrino source strength due to nucleon-nucleon bremsstrahlung and determine bremsstrahlung's influence on the emergent $\nu_{\mu}$ and $\nu_{\tau}$ neutrino spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.