Abstract
The correlation matrix (denoted by R) plays an important role in many statistical models. Unfortunately, sampling the correlation matrix in Markov chain Monte Carlo (MCMC) algorithms can be problematic. In addition to the positive definite constraint of covariance matrices, correlation matrices have diagonal elements fixed at one. In this article, we propose an efficient two-stage parameter expanded reparameterization and Metropolis-Hastings (PX-RPMH) algorithm for simulating R. Using this algorithm, we draw all elements of R simultaneously by first drawing a covariance matrix from an inverse Wishart distribution, and then translating it back to a correlation matrix through a reduction function and accepting it based on a Metropolis-Hastings acceptance probability. This algorithm is illustrated using multivariate probit (MVP) models and multivariate regression (MVR) models with a common correlation matrix across groups. Via both a simulation study and a real data example, the performance of the PX-RPMH algorithm is compared with those of other common algorithms. The results show that the PX-RPMH algorithm is more efficient than other methods for sampling a correlation matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.