Abstract
We introduce a new algorithm for computing Euclidean shortest paths in the plane in the presence of polygonal obstacles. In particular, for a given start points, we build a planar subdivision (ashortest path map) that supports efficient queries for shortest paths froms to any destination pointt. The worst-case time complexity of our algorithm isO(kn log2n), wheren is the number of vertices describing the polygonal obstacles, andk is a parameter we call the “illumination depth” of the obstacle space. Our algorithm usesO(n) space, avoiding the possibly quadratic space complexity of methods that rely on visibility graphs. The quantityk is frequently significantly smaller thann, especially in some of the cases in which the visibility graph has quadratic size. In particular,k is bounded above by the number of different obstacles that touch any shortest path froms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.