Abstract

We extend the application of multiwavelet-based Bernstein polynomials for the numerical solution of differential equations governing AC circuits (LCR and LC). The operational matrix of integration is obtained from the orthonormal Bernstein polynomial wavelet bases, which diminishes differential equations into the system of linear algebraic equations for easy computation. It appeared that fewer wavelet bases gave better results. The convergence and exactness were examined by comparing the calculated numerical solution and the known analytical solution. The error function was calculated and illustrated graphically for the reliability and accuracy of the proposed method. The proposed method examined several physical issues that lead to differential equations. HIGHLIGHTS Differential equations governing AC circuits are converted into the system of linear algebraic equations using Bernstein polynomial multiwavelets operational matrix of integration for easy computation The convergence and exactness were examined by comparing the calculated numerical solution and the known analytical solution The error function is calculated and shown graphically GRAPHICAL ABSTRACT

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call