Abstract

In the present work, Binary Particle Swarm Optimization (BPSO) based optimal re-configuration for balanced and unbalanced radial distribution networks using Affine Arithmetic (AA), with uncertainty in generation and load, is proposed to minimize the system losses. An expression for three phase real affine power loss is derived with partial deviations of real power loss in lines with respect to power injections in other buses and also with respect to power injections in other phases in case of unbalanced distribution systems. The major contribution of the present work is the application of AA based optimal network reconfiguration, to both balanced and unbalanced radial distribution networks with uncertainty. The proposed method is tested on IEEE 16, 33, 85 and 119 bus balanced distribution systems and an unbalanced 123 bus system with Distributed Generation (DG) connected at some buses. The optimal loss intervals obtained by the proposed method are compared with that obtained by Interval Arithmetic (IA) and Monte Carlo (MC) simulations based methods. The simulation results show that proposed AA based analysis gives an optimal reconfiguration, for both balanced and unbalanced radial distribution systems with uncertainty as compared to existing IA based method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.