Abstract

In recent years, many researchers have attempted to achieve cross-domain diagnosis of faults through domain adaptation (DA) methods. However, owing to the complex physical environments, applications of DA-based approach are not guaranteed to unknown operating environments. Some existing domain generalization (DG) methods require enough fully labeled source domains to train, which are often unavailable in practical settings. In this study, an adversarial domain generalization network (ADGN) based on class boundary feature detection is proposed. The ADGN can diagnose faults in unknown operating environments, and only one fully labeled domain is used in training. Although ADGN has to access fully unlabeled auxiliary domains, a large number of unlabeled samples exist under actual working conditions. In our method, fuzzy features at a classification boundary are detected by maximizing the classifier differences. Better feature mapping functions and domain-invariant features are obtained by adversarial training. As the training proceeds, the differences in the distribution of features among the source, auxiliary, and unknown domains become smaller so domain-invariant features can be used for fault diagnosis in unknown operating environments. Comprehensive experiments showed that ADGN can achieve higher fault diagnosis accuracies than other methods when only one fully labeled domain is used in an unknown operating environment. The ADGN can even cope comfortably with complex transfer tasks with different speeds and loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call