Abstract
This study presents a new trust-region procedure to solve a system of nonlinear equations in several variables. The proposed approach combines an effective adaptive trust-region radius with a nonmonotone strategy, because it is believed that this combination can improve the efficiency and robustness of the trust-region framework. Indeed, it decreases the computational cost of the algorithm by decreasing the required number of subproblems to be solved. The global and the quadratic convergence of the proposed approach is proved without any nondegeneracy assumption of the exact Jacobian. Preliminary numerical results indicate the promising behavior of the new procedure to solve systems of nonlinear equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.