Abstract

In this work, an adaptive generalized cross-correlation (AGCC) method is proposed that focuses on the problem of the conventional cross-correlation method not effectively realizing the time delay estimation of signals with strong periodicity. With the proposed method, the periodicity of signals is judged and the center frequencies of the strongly periodical components are determined through the spectral analysis of the input signals. Band-stop filters that are used to suppress the strongly periodical components are designed and the mutual power spectral density of the input signals that is processed by the band-stop filters is calculated. Then, the cross-correlation function that is processed is the inverse Fourier transform of the mutual power spectral density. Finally, the time delay is estimated by seeking the peak position of the processed cross-correlation function. Simulation experiments and practical velocity measurement experiments were carried out to verify the effectiveness of the proposed AGCC method. The experimental results showed that the new AGCC method could effectively realize the time delay estimation of signals with strong periodicity. In the simulation experiments, the new method could realize the effective time delay estimation of signals with strong periodicity when the energy ratio of the strongly periodical component to the aperiodic component was under 150. Meanwhile, the cross-correlation method and other generalized cross-correlation methods fail in time delay estimation when the energy ratio is higher than 30. In the practical experiments, the velocity measurement of slug flow with strong periodicity was implemented in small channels with inner diameters of 2.0 mm, 2.5 mm and 3.0 mm. With the proposed method, the relative errors of the velocity measurement were less than 4.50%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call