Abstract
In this work we construct a new reliable, efficient and local a posteriori error estimate for the single layer and hyper-singular boundary integral equations associated to the Helmholtz equation in two dimensions. It uses a localization technique based on a generic operator Λ which is used to transport the residual into L2. Under appropriate conditions on the construction of Λ, we show that it is asymptotically exact with respect to the energy norm of the error. The single layer equation and the hyper-singular equation are treated separately. While the current analysis requires the boundary to be smooth, numerical experiments show that the new error estimators also perform well for non-smooth boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.