Abstract

By using bivariate quadratic splines on triangulated quadrangulations (or FVS triangulations), we construct a new 8-node quadrilateral element, which reproduces polynomials of degree 2, and possesses second-order completeness in Cartesian coordinates. The computation of derivatives, integrals and products of the element shape functions can be simplified greatly by using their Bézier coefficients on each triangle cell. Some appropriate examples are employed to evaluate the performance of the proposed element. The numerical results show that the new spline element is superior to the standard 8-node isoparametric element, and is comparable to some other 8-node quadrilateral elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.