Abstract

It is well known that the shape and volume of the workspace are one of the greatest weaknesses of parallel kinematic machine tools (PKM). Hexaglide and Triaglide mechanisms are examples where workspace extension is achieved by elongating one axis as a principal motion axis that is a common feature of all Cartesian machines. With the idea of principal axis of motion in mind, a new 3-DOF spatial parallel mechanism for horizontal and vertical milling machines has been developed. In comparison with similar developed mechanisms it has several advantages such as: rather regular shape of the workspace (slightly modified block) similar to serial machines; greater stiffness by nature of the struts arrangement; good force and speed ratio through the entire mechanism's workspace. The paper describes the structure of the mechanism, modelling approach and simulation on a developed vertical milling machine prototype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.