Abstract

Abstract The solar wind (SW) is an outflow of the solar coronal plasma, which expands supersonically throughout the heliosphere. SW particles interact by charge exchange with interstellar neutral atoms; on the one hand, they modify the distribution of this gas in interplanetary space, and, on the other hand, they are the seed populations for heliospheric pickup ions and energetic neutral atoms (ENAs). The heliolatitudinal profiles of the SW’s speed and density evolve during the solar activity cycle. A model of the evolution of the SW’s speed and density is needed to interpret observations of ENAs, pickup ions, the heliospheric backscatter glow, etc. We derive the Warsaw Heliospheric Ionization Model 3DSW—WawHelIon 3DSW—based on interplanetary scintillation (IPS) tomography maps of the SW speed. We use the IPS tomography data from 1985 to 2020, compiled by Tokumaru et al. We derive a novel statistical method of filtering these data against outliers; we present a flexible analytic formula for the latitudinal profiles of the SW speed, based on Legendre polynomials of varying order with additional restraining conditions at the poles; fit this formula to the yearly filtered data; and calculate yearly SW density profiles using the latitudinally invariant SW energy flux observed in the ecliptic plane. Despite the application of a refined IPS data set, a more sophisticated data filtering method, and a more flexible analytic model, the present results mostly agree with those obtained previously, demonstrating the robustness of IPS studies of the SW’s structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call