Abstract

This study presents a new three-parameter beta distribution defined on the unit interval, which can have increasing, decreasing, left-skewed, right-skewed, approximately symmetric, bathtub, and upside-down bathtub shaped densities, and increasing, U, and bathtub shaped hazard rates. This model can define well-known distributions with various parameters and supports, such as Kumaraswamy, beta exponential, exponential, exponentiated exponential, uniform, the generalized beta of the first kind, and beta power distributions. We present a comprehensive account of the mathematical features of the new model. Maximum likelihood methods and a Bayesian method under squared error and linear exponential loss functions are presented; also, approximate confidence intervals are obtained. We present a simulation study to compare all the results. Two real-world data sets are analyzed to demonstrate the utility and adaptability of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.