Abstract

The behavior of specific dispersive waves in a new $$(3+1)$$ -dimensional Hirota bilinear (3D-HB) equation is studied. A Backlund transformation and a Hirota bilinear form of the model are first extracted from the truncated Painleve expansion. Through a series of mathematical analyses, it is then revealed that the new 3D-HB equation possesses a series of rational-type solutions. The interaction of lump-type and 1-soliton solutions is studied and some interesting and useful results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.