Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) are fascinating photocatalytic materials because of their unique physical and catalytic properties. Herein, we report a new (E)-4-(3-carboxyacrylamido) benzoic acid [ABA–MA] ligand synthesized under facile conditions. This ABA–MA ligand is further utilized to synthesize a copper-based 2D MOF via the solvothermal process. The resulting 2D MOF is characterized for morphology and electronic structural analysis using advanced techniques, such as proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and scanning electron microscopy. Furthermore, 2D MOF is employed as a photocatalyst for degrading organic dyes, demonstrating the degradation/reduction of methylene blue (MeBl) dye with excellent catalytic/photodegradation activity in the absence of any photosensitizer or cocatalyst. The apparent rate constant (kap) values for the catalytic degradation/reduction of MeBl on the Cu(II)–[ABA-MA] MOF are reported to be 0.0093 min−1, 0.0187 min−1, and 0.2539 min−1 under different conditions of sunlight and NaBH4. The kinetics and stability evaluations reveal the noteworthy photocatalytic potential of the Cu(II)–[ABA–MA] MOF for wastewater treatment. This work offers new insights into the fabrication of new MOFs for highly versatile photocatalytic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.