Abstract

We report on the Middle Atmospheric Water Vapor Radiometer (MIAWARA) instrument, a new ground-based 22-GHz-radiometer that provides water vapor profiles with an altitude coverage of 22-80 km. This paper focuses on the instrumentation and calibration of the new instrument. It is a noncooled instrument with a very low receiver noise temperature, even lower than receiver noise temperatures of existing cooled instruments. The calibration of MIAWARA is achieved with so-called tipping-curve and balanced calibration schemes. The combination of these two calibration techniques allows us to set up a different calibration scheme than most of the other, rarely existing, water vapor profile radiometers at 22 GHz without the commonly used liquid nitrogen calibration. With the use of tipping-curve calibrations, the instrument operates as a standalone instrument. This independence of liquid-nitrogen-cooled calibration targets and of other instruments makes MIAWARA a suitable instrument for campaign use. In addition to the instrumental and calibrational description, a validation technique for the tipping-curve calibration is presented. Finally, first results obtained by measurements carried out in the Swiss plateau are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.