Abstract

The new heteroleptic ruthenium(II) complex containing a 1H-pyridin-(2E)-ylidene (PYE) ligand was synthesized and characterized using UV/Vis, FTIR, and NMR spectroscopies, mass spectrometry, elemental analysis, and cyclic voltammetry. The photovoltaic performance of the ruthenium complex as a charge transfer photosensitizer in nc-titanium dioxide based dye-sensitized solar cell was studied and compared with cis-bis(isothiocyanato)(2,2′-bipyridyl-4,4′-dicarboxylato)(2,2′-bipyridyl-4,4′-di-nonyl)ruthenium(II) (Z907) under standard AM 1.5 sunlight. The complex CS90 gave a photocurrent density of 1.80 mA cm−2, 400 mV open-circuit potential, and 0.58 fill factor yielding an efficiency of 0.42% where the reference Z907 yielded an efficiency of 4.12%. The decrease in conversion efficiency observed for CS90 is attributed to a steric interaction between PYE and the TiO2 surface that prevents optimum binding and also restricts ligand dynamics that are associated with oxidation state changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call