Abstract

In this paper, we report the one-step, metal catalyst-free synthesis of 6-(4-chlorophenyl)-3,3-dimethyl-4-(N-oxide)-1,2,3,4-tetrahydro-1,2,4-triazine using 2,4-dihydroxyacetophenone and p‑chloro isonitrosophenyl hydrazine and its full characterization including single crystal X-ray analysis. A simple and straightforward method for the synthesis is presented and the compound is obtained in a moderate yield and high purity. It's molecular and crystal structures were determined and found that It belongs to triclinic system P -1 space group with a = 5.9173 (2) Å, b = 13.3113 (4) Å, c = 14.3963 (4) Å, α = 97.583 (2) °, β = 93.207 (2) °, γ = 91.378 (2) °, Z = 4 and V = 1121.71 (6) Å3. In the crystal structure, the intermolecular NH⋯O hydrogen bonds link the molecules into infinite chains along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (48.4 %), H⋯C/C⋯H (16.6 %), H⋯O/O⋯H (13.7 %) and H⋯CI/CI⋯H (11.0 %) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. The electrochemical characterizations and the supercapacitor performances of the compound were also investigated. Although, the pretreated porous carbonaceous materials or nanostructures provide superior surface enhancement properties in terms of the electrode modifications for a wide range of electrochemical applications, here we found a better performance for the proposed single crystal hydrazone as an electrode modifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.