Abstract

Brain MR images are composed of three main regions such as gray matter, white matter and cerebrospinal fluid. Radiologists and medical practitioners make decisions through evaluating the developments in these regions. Study of these MR images suffers from two major issues such as: (a) the boundaries of their gray matter and white matter regions are ambiguous and unclear in nature, and (b) their regions are formed with unclear inhomogeneous gray structures. These two issues make the diagnosis of critical diseases very complex. To solve these issues, this study presented a method of image segmentation based on the neutrosophic set (NS) theory and neutrosophic entropy information (NEI). By nature, the proposed method is adaptive to select the threshold value and is entitled as neutrosophic-entropy based adaptive thresholding segmentation algorithm (NEATSA). In this study, experimental results were provided through the segmentation of Parkinson's disease (PD) MR images. Experimental results, including statistical analyses showed that NEATSA can segment the main regions of MR images very clearly compared to the well-known methods of image segmentation available in literature of pattern recognition and computer vision domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.