Abstract

Hemorrhagic shock followed by resuscitation (HSR) causes neutrophil sequestration in the lung which leads to acute lung injury (ALI). Neutrophil elastase (NE) is thought to play a pivotal role in the pathogenesis of ALI. This study investigated whether sivelestat, a specific NE inhibitor, can attenuate ALI induced by HSR in rats. Male Sprague-Dawley rats were subjected to hemorrhagic shock by withdrawing blood so as to maintain a mean arterial blood pressure of 30+/-5 mm Hg for 60 min followed by resuscitation with the shed blood. HSR-treated animals received a bolus injection of sivelestat (10 mg/kg) intravenously at the start of resuscitation followed by continuous infusion for 60 min (10 mg/kg/h) during the resuscitation phase, or the vehicle. Lung injury was assessed by pulmonary histology, lung wet-weight to dry-weight (W/D) ratio, myeloperoxidase (MPO) activity, gene expression of tumor necrosis factor (TNF)-alpha and inducible nitric oxide synthase (iNOS), DNA binding activity of nuclear factor (NF)-kappaB, and immunohistochemical analysis of intercellular adhesion molecule (ICAM)-1. HSR treatment induced lung injury, as demonstrated by pulmonary edema with infiltration of neutrophils, the increase in lung W/D ratio, MPO activity, gene expression of TNF-alpha and iNOS, and DNA-binding activity of NF-kappaB, and enhanced expression of ICAM-1. In contrast, sivelestat treatment significantly ameliorated the HSR-induced lung injury, as judged by the marked improvement in all these indices. These results indicate that sivelestat attenuated HSR-induced lung injury at least in part through an inhibition of the inflammatory signaling pathway, in addition to the direct inhibitory effect on NE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call