Abstract

Recent and ongoing developments in wind turbine technology indicate a trend towards utilization of high capacity (e.g., up to 5 MW) wind power units in large wind farms. Higher capacity of the wind turbine necessitates operation of the corresponding electric machine and the static converter system at higher voltages. This paper presents a neutral point diode clamped (NPC) converter system that inherently accommodates higher voltage and power ratings of a high capacity wind power unit. The overall control strategy of an NPC-based wind power unit and the details of the ac side and the dc side controls of the NPC converter system are also described. The generator-side NPC converter provides torque-speed control of the turbine-generator unit. The network-side NPC converter controls real and reactive power flow to the network and thus regulates the dc bus voltage and the ac side power-factor (or voltage) respectively. The paper also presents a new control approach to balance the dc capacitor voltages. The NPC converter system is augmented with a dc chopper that controls the synchronous generator field current. The NPC-based converter system is used to interface a 3 MW, direct-drive (gearless), synchronous machine based wind power unit to the utility grid. Performance of the overall NPC-based wind power unit, under the proposed controls, is evaluated based on time domain simulations in the power systems computer aided design (PSCAD) electromagnetic transient for DC (EMTDC) environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.