Abstract

Earth-abundant-metal catalyzed double bond transposition offers a sustainable and atom-economical route toward the synthesis of internal alkenes. With an emphasis specifically on internal olefins and ethers, the isomerization of allylic amines has been particularly under represented in the literature. Herein, we report an efficient methodology for the selective isomerization of N-allylic organic compounds, including amines, amides, and imines. The reaction is catalyzed by a neutral PCNHCP cobalt(I) pincer complex and proceeds via a π-allyl mechanism. The isomerization occurs readily at 80-90 °C, and it is compatible with a wide variety of functional groups. The in situ formed enamines could additionally be used for a one-pot inverse-electron-demand Diels-Alder reaction to furnish a series of diversely substituted heterobiaryls, which is further discussed in this report.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call