Abstract

Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.

Highlights

  • The measurement of perfusion has become an indispensable tool in the clinical evaluation of the brain

  • While dynamic susceptibility contrast (DSC)-magnetic resonance imaging (MRI), computed tomography (CT) perfusion imaging, single-photon emission tomography (SPECT), and H2[15O] positronemission tomography (PET) are well-established methods for investigating blood flow in neurological diseases, arterial spin labeling (ASL) MRI has emerged as a versatile complement that warrants regular consideration in the clinical setting

  • PCASL avoids the need of additional hardware

Read more

Summary

Introduction

The measurement of perfusion has become an indispensable tool in the clinical evaluation of the brain. More advanced methods provide alternative readouts, such as 3D-gradient and spin echo (GRASE) [30]. This sequence has great advantages for ASL because it allows acquisition of the entire volume of interest in a single shot, thereby reducing the slice-dependent variation in perfusion signal due to differences in acquisition delays that are inherent to 2D multi-slice methods. An alternative to 3D GRASE is 3D rapid acquisition relaxation enhanced (RARE) combined with a spiral readout trajectory [31] This sequence oversamples the centre of the k-space, providing shorter echo times and superior SNR, but can introduce through-plane blurring due to long readout times [32]. Such blurring can be reduced by segmenting the acquisition of the 3D readout into multiple acquisitions

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call