Abstract

Gq-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca2+ signals. There is a strong need for an optogenetic tool that enables powerful experimental control over Gq signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular Gq signaling with high temporal and spatial resolution. Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered, Gq-dependent Ca2+ release from intracellular stores and protein kinase C activation. Strong Ca2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca2+ transition, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of Gq signaling in both non-excitable cells and excitable cells in all major organ systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call